Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 415
Filtrar
1.
Sci Rep ; 14(1): 8229, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589425

RESUMO

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder affecting 5-20% of reproductive-age women. However, the treatment of PCOS is mainly based on symptoms and not on its pathophysiology. Neuroendocrine disturbance, as shown by an elevated LH/FSH ratio in PCOS patients, was thought to be the central mechanism of the syndrome, especially in lean PCOS. LH and FSH secretion are influenced by GnRH pulsatility of GnRH neurons in the hypothalamus. Kisspeptin is the main regulator of GnRH secretion, whereas neurokinin B (NKB) and dynorphin regulate kisspeptin secretion in KNDy neurons. This study aims to deepen the understanding of the neuroendocrine disorder in lean PCOS patients and its potential pathophysiology-based therapy. A cross-sectional study was performed at Dr. Cipto Mangunkusumo Kencana Hospital and the IMERI UI HRIFP cluster with 110 lean PCOS patients as subjects. LH, FSH, LH/FSH ratio, kisspeptin, NKB, dynorphin, leptin, adiponectin, AMH, fasting blood glucose, fasting insulin, HOMA-IR, testosterone, and SHBG were measured. Bivariate and path analyses were performed to determine the relationship between variables. There was a negative association between dynorphin and kisspeptin, while NKB levels were not associated with kisspeptin. There was no direct association between kisspeptin and the LH/FSH ratio; interestingly, dynorphin was positively associated with the LH/FSH ratio in both bivariate and pathway analyses. AMH was positively correlated with the LH/FSH ratio in both analyses. Path analysis showed an association between dynorphin and kisspeptin levels in lean PCOS, while NKB was not correlated with kisspeptin. Furthermore, there was a correlation between AMH and the LH/FSH ratio, but kisspeptin levels did not show a direct significant relationship with the LH/FSH ratio. HOMA-IR was negatively associated with adiponectin levels and positively associated with leptin and FAI levels. In conclusion, AMH positively correlates with FAI levels and is directly associated with the LH/FSH ratio, showing its important role in neuroendocrinology in lean PCOS. From the path analysis, AMH was also an intermediary variable between HOMA-IR and FAI with the LH/FSH ratio. Interestingly, this study found a direct positive correlation between dynorphin and the LH/FSH ratio, while no association between kisspeptin and the LH/FSH ratio was found. Further research is needed to investigate AMH and dynorphin as potential therapeutic targets in the management of lean PCOS patients.


Assuntos
Hormônio Luteinizante , Síndrome do Ovário Policístico , Feminino , Humanos , Dinorfinas/metabolismo , Leptina , Kisspeptinas/metabolismo , Estudos Transversais , Adiponectina , Neurocinina B/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Foliculoestimulante
2.
Best Pract Res Clin Endocrinol Metab ; 38(1): 101774, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37076317

RESUMO

Vasomotor symptoms (VMS) are characteristic of menopause experienced by over 75% of postmenopausal women with significant health and socioeconomic implications. Although the average duration of symptoms is seven years, 10% of women experience symptoms for more than a decade. Although menopausal hormone therapy (MHT) remains an efficacious and cost-effective treatment, its use may not be suitable in all women, such as those at an increased risk of breast cancer or gynaecological malignancy. The neurokinin B (NKB) signaling pathway, together with its intricate connection to the median preoptic nucleus (MnPO), has been postulated to provide integrated reproductive and thermoregulatory responses, with a central role in mediating postmenopausal VMS. This review describes the physiological hypothalamo-pituitary-ovary (HPO) axis, and subsequently the neuroendocrine changes that occur with menopause using evidence derived from animal and human studies. Finally, data from the latest clinical trials using novel therapeutic agents that antagonise NKB signaling are reviewed.


Assuntos
Fogachos , Menopausa , Animais , Feminino , Humanos , Fogachos/tratamento farmacológico , Fogachos/etiologia , Fogachos/metabolismo , Menopausa/fisiologia , Neurocinina B/metabolismo , Terapia de Reposição Hormonal , Transdução de Sinais
3.
Gene ; 895: 148016, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37981083

RESUMO

Understanding the pathophysiology of idiopathic central precocious puberty (ICPP) is essential, in view of its consequences on reproductive health and metabolic disorders in later life. Towards this, estimation of circulating levels of the neuropeptides, viz; Kisspeptin (Kp-10), Neurokinin B (NKB) and Neuropeptide Y (NPY), acting upstream to Gonadotropin-Releasing Hormone (GnRH), has shown promise. Insights can also be gained from functional studies on genetic variations implicated in ICPP. This study investigated the pathophysiology of ICPP in a girl by exploring the therapeutic relevance of the circulating levels of Kp-10, NKB, NPY and characterizing the nonsynonymous KISS1R variant, L364H, that she harbours, in a homozygous condition. Plasma levels of Kp-10, NKB and NPY before and after GnRH analog (GnRHa) treatment, were determined by ELISA. It was observed that GnRHa treatment resulted in suppression of circulating levels of Kp-10, NKB and NPY. Further, the H364 variant in KISS1R was generated by site directed mutagenesis. Post transient transfection of either L364 or H364 KISS1R variant in CHO cells, receptor expression was ascertained by western blotting, indirect immunofluorescence and flow cytometry. Kp-10 stimulated signalling response was also determined by phospho-ERK and inositol phosphate production. Structure-function studies revealed that, although the receptor expression in H364 KISS1R was comparable to L364 KISS1R, there was an enhanced signalling response through this variant at high doses of Kp-10. Thus, elevated levels of Kp-10, acting through H364 KISS1R, contributed to the manifestation of ICPP, providing further evidence that dysregulation of Kp-10/KISS1R axis impacts the onset of puberty.


Assuntos
Puberdade Precoce , Animais , Cricetinae , Feminino , Humanos , Cricetulus , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/genética , Neurocinina B/genética , Neurocinina B/metabolismo , Puberdade Precoce/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1/genética
4.
Biol Reprod ; 110(2): 275-287, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37930247

RESUMO

The timing of puberty onset is reliant on increased gonadotropin-releasing hormone (GnRH). This elicits a corresponding increase in luteinizing hormone (LH) due to a lessening of sensitivity to the inhibitory actions of estradiol (E2). The mechanisms underlying the increase in GnRH release likely involve a subset of neurons within the arcuate (ARC) nucleus of the hypothalamus that contain kisspeptin, neurokinin B (NKB), and dynorphin (KNDy neurons). We aimed to determine if KNDy neurons in female sheep are critical for: timely puberty onset; the LH surge; and the response to an intravenous injection of the neurokinin-3 receptor (NK3R) agonist, senktide. Prepubertal ewes received injections aimed at the ARC containing blank-saporin (control, n = 5) or NK3-saporin (NK3-SAP, n = 6) to ablate neurons expressing NK3R. Blood samples taken 3/week for 65 days following surgery were assessed for progesterone to determine onset of puberty. Control ewes exhibited onset of puberty at 33.2 ± 3.9 days post sampling initiation, whereas 5/6 NK3-SAP treated ewes didn't display an increase in progesterone. After an artificial LH surge protocol, surge amplitude was lower in NK3-SAP ewes. Finally, ewes were treated with senktide to determine if an LH response was elicited. LH pulses were evident in both groups in the absence of injections, but the response to senktide vs saline was similar between groups. These results show that KNDy cells are necessary for timely puberty onset and for full expresson of the LH surge. The occurrence of LH pulses in NK3-SAP treated ewes may indicate a recovery from an apulsatile state.


Assuntos
Núcleo Arqueado do Hipotálamo , Hormônio Luteinizante , Fragmentos de Peptídeos , Substância P/análogos & derivados , Feminino , Animais , Ovinos , Hormônio Luteinizante/farmacologia , Núcleo Arqueado do Hipotálamo/metabolismo , Saporinas/farmacologia , Progesterona/farmacologia , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Neurocinina B/metabolismo , Dinorfinas/farmacologia , Dinorfinas/metabolismo , Kisspeptinas/metabolismo
5.
Endocr Rev ; 45(1): 30-68, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37467734

RESUMO

Kisspeptin (KP) and neurokinin B (NKB) are neuropeptides that govern the reproductive endocrine axis through regulating hypothalamic gonadotropin-releasing hormone (GnRH) neuronal activity and pulsatile GnRH secretion. Their critical role in reproductive health was first identified after inactivating variants in genes encoding for KP or NKB signaling were shown to result in congenital hypogonadotropic hypogonadism and a failure of pubertal development. Over the past 2 decades since their discovery, a wealth of evidence from both basic and translational research has laid the foundation for potential therapeutic applications. Beyond KP's function in the hypothalamus, it is also expressed in the placenta, liver, pancreas, adipose tissue, bone, and limbic regions, giving rise to several avenues of research for use in the diagnosis and treatment of pregnancy, metabolic, liver, bone, and behavioral disorders. The role played by NKB in stimulating the hypothalamic thermoregulatory center to mediate menopausal hot flashes has led to the development of medications that antagonize its action as a novel nonsteroidal therapeutic agent for this indication. Furthermore, the ability of NKB antagonism to partially suppress (but not abolish) the reproductive endocrine axis has supported its potential use for the treatment of various reproductive disorders including polycystic ovary syndrome, uterine fibroids, and endometriosis. This review will provide a comprehensive up-to-date overview of the preclinical and clinical data that have paved the way for the development of diagnostic and therapeutic applications of KP and NKB.


Assuntos
Kisspeptinas , Neurocinina B , Gravidez , Feminino , Humanos , Neurocinina B/genética , Neurocinina B/metabolismo , Kisspeptinas/uso terapêutico , Hormônio Liberador de Gonadotropina/metabolismo , Reprodução/fisiologia , Hipotálamo
6.
J Mol Endocrinol ; 72(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085702

RESUMO

The exact neural construct underlying the dynamic secretion of gonadotrophin-releasing hormone (GnRH) has only recently been identified despite the detection of multiunit electrical activity volleys associated with pulsatile luteinising hormone (LH) secretion four decades ago. Since the discovery of kisspeptin/neurokinin B/dynorphin neurons in the mammalian hypothalamus, there has been much research into the role of this neuronal network in controlling the oscillatory secretion of gonadotrophin hormones. In this review, we provide an update of the progressive application of cutting-edge techniques combined with mathematical modelling by the neuroendocrine community, which are transforming the functional investigation of the GnRH pulse generator. Understanding the nature and function of the GnRH pulse generator can greatly inform a wide range of clinical studies investigating infertility treatments.


Assuntos
Hormônio Liberador de Gonadotropina , Hormônio Luteinizante , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Neurocinina B/metabolismo , Dinorfinas/metabolismo , Kisspeptinas/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Mamíferos/metabolismo
7.
Theriogenology ; 215: 302-311, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128223

RESUMO

Neurokinin B (NKB), a peptide encoded by the tachykinin 3 (TAC3), is critical for reproduction in all studied species. However, its potential roles in birds are less clear. Using the female chicken (c-) as a model, we showed that cTAC3 is composed of five exons with a full-length cDNA of 787 bp, which was predicted to generate the mature NKB peptide containing 10 amino acids. Using cell-based luciferase reporter assays, we demonstrated that cNKB could effectively and specifically activate tachykinin receptor 3 (TACR3) in HEK293 cells, suggesting its physiological function is likely achieved via activating cTACR3 signaling. Notably, cTAC3 and cTACR3 were predominantly and abundantly expressed in the hypothalamus of hens and meanwhile the mRNA expression of cTAC3 was continuously increased during development, suggesting that NKB-TACR3 may emerge as important components of the neuroendocrine reproductive axis. In support, intraperitoneal injection of cNKB could significantly promote hypothalamic cGnRH-Ι, and pituitary cFSHß and cLHß expression in female chickens. Surprisingly, cTAC3 and cTACR3 were also expressed in the pituitary gland, and cNKB treatment significantly increased cLHß and cFSHß expression in cultured primary pituitary cells, suggesting cNKB can also act directly at the pituitary level to stimulate gonadotropin synthesis. Collectively, our results reveal that cNKB functionally regulate GnRH/gonadotropin synthesis in female chickens.


Assuntos
Galinhas , Gonadotropinas , Humanos , Feminino , Animais , Galinhas/genética , Galinhas/metabolismo , Células HEK293 , Neurocinina B/genética , Neurocinina B/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo
8.
Endocrinology ; 164(12)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37936337

RESUMO

The mechanism by which arcuate kisspeptin (ARNKISS) neurons co-expressing glutamate, neurokinin B, and dynorphin intermittently synchronize their activity to drive pulsatile hormone secretion remains unclear in females. In order to study spontaneous synchronization within the ARNKISS neuron network, acute brain slices were prepared from adult female Kiss1-GCaMP6 mice. Analysis of both spontaneous synchronizations and those driven by high frequency stimulation of individual ARNKISS neurons revealed that the network exhibits semi-random emergent excitation dependent upon glutamate signaling through AMPA receptors. No role for NMDA receptors was identified. In contrast to male mice, ongoing tachykinin receptor tone within the slice operated to promote spontaneous synchronizations in females. As previously observed in males, we found that ongoing dynorphin transmission in the slice did not contribute to synchronization events. These observations indicate that a very similar AMPA receptor-dependent mechanism underlies ARNKISS neuron synchronizations in the female mouse supporting the "glutamate two-transition" model for kisspeptin neuron synchronization. However, a potentially important sex difference appears to exist with a more prominent facilitatory role for tachykinin transmission in the female.


Assuntos
Dinorfinas , Kisspeptinas , Camundongos , Feminino , Masculino , Animais , Kisspeptinas/metabolismo , Dinorfinas/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Neurocinina B/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Glutamatos , Hormônio Liberador de Gonadotropina/metabolismo
9.
Sci Rep ; 13(1): 20495, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993510

RESUMO

The gonadotropin-releasing hormone (GnRH) pulse and surge are considered to be generated by arcuate kisspeptin/neurokinin B/dynorphin A (KNDy) neurons and anteroventral periventricular nucleus (AVPV) kisspeptin neurons, respectively, in female rodents. The majority of KNDy and AVPV kisspeptin neurons express κ-opioid receptors (KORs, encoded by Oprk1) in female rodents. Thus, this study aimed to investigate the effect of a conditional Oprk1-dependent Kiss1 deletion in kisspeptin neurons on the luteinizing hormone (LH) pulse/surge and fertility using Kiss1-floxed/Oprk1-Cre rats, in which Kiss1 was deleted in cells expressing or once expressed the Oprk1/Cre. The Kiss1-floxed/Oprk1-Cre female rats, with Kiss1 deleted in a majority of KNDy neurons, showed normal puberty while having a one-day longer estrous cycle and fewer pups than Kiss1-floxed controls. Notably, ovariectomized (OVX) Kiss1-floxed/Oprk1-Cre rats showed profound disruption of LH pulses in the presence of a diestrous level of estrogen but showed apparent LH pulses without estrogen treatment. Furthermore, Kiss1-floxed/Oprk1-Cre rats, with Kiss1 deleted in approximately half of AVPV kisspeptin neurons, showed a lower peak of the estrogen-induced LH surge than controls. These results suggest that arcuate and AVPV kisspeptin neurons expressing or having expressed Oprk1 have a role in maintaining normal GnRH pulse and surge generation, the normal length of the estrous cycle, and the normal offspring number in female rats.


Assuntos
Kisspeptinas , Hormônio Luteinizante , Ratos , Feminino , Animais , Kisspeptinas/metabolismo , Hormônio Luteinizante/farmacologia , Estrogênios/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Neurocinina B/genética , Neurocinina B/metabolismo , Dinorfinas/metabolismo , Neurônios/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo
10.
Ageing Res Rev ; 92: 102086, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37821047

RESUMO

The Kisspeptin1 (KISS1)/neurokinin B (NKB)/Dynorphin (Dyn) [KNDy] neurons in the hypothalamus regulate the reproduction stage in human beings and rodents. KNDy neurons co-expressed all KISS1, NKB, and Dyn peptides, and hence commonly regarded as KISS1 neurons. KNDy neurons contribute to the "GnRH pulse generator" and are implicated in the regulation of pulsatile GnRH release. The estradiol (E2)-estrogen receptor (ER) interactions over GnRH neurons in the hypothalamus cause nitric oxide (NO) discharge, in addition to presynaptic GABA and glutamate discharge from respective neurons. The released GABA and glutamate facilitate the activity of GnRH neurons via GABAA-R and AMPA/kainate-R. The KISS1 stimulates MAPK/ERK1/2 signaling and cause the release of Ca2+ from intracellular store, which contribute to neuroendocrine function, increase apoptosis and decrease cell proliferation and metastasis. The ageing in women deteriorates KISS1/KISS1R interaction in the hypothalamus which causes lower levels of GnRH. Because examining the human brain is so challenging, decades of clinical research have failed to find the causes of KNDy/GnRH dysfunction. The KISS1/KISS1R interactions in the brain have a neuroprotective effect against Alzheimer's disease (AD). These findings modulate the pathophysiological role of the KNDy/GnRH neural network in polycystic ovarian syndrome (PCOS) associated with ageing and, its protective role in cancer and AD. This review concludes with protecting effect of the steroid-derived acute regulatory enzyme (StAR) against neurotoxicity in the hippocampus, and hypothalamus, and these measures are fundamental for delaying ageing with PCOS. StAR could serve as novel diagnostic marker and therapeutic target for the most prevalent hormone-sensitive breast cancers (BCs).


Assuntos
Doença de Alzheimer , Síndrome do Ovário Policístico , Animais , Feminino , Humanos , Núcleo Arqueado do Hipotálamo/metabolismo , Dinorfinas/metabolismo , Ácido gama-Aminobutírico , Glutamatos , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Receptores de Kisspeptina-1 , Roedores
11.
Endocrinology ; 164(11)2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37776515

RESUMO

The current model for the synchronization of GnRH neural activity driving GnRH and LH pulses proposes that a set of arcuate (ARC) neurons that contain kisspeptin, neurokinin B, and dynorphin (KNDy neurons) is the GnRH pulse generator. This study tested the functional role of ovine KNDy neurons in pulse generation and explored the roles of nearby Kiss1 receptor (Kiss1R)-containing cells using lesions produced with saporin (SAP) conjugates. Injection of NK3-SAP ablated over 90% of the KNDy cells, while Kiss-SAP (saporin conjugated to kisspeptin-54) lesioned about two-thirds of the Kiss1R population without affecting KNDy or GnRH cell number. Both lesions produced a dramatic decrease in LH pulse amplitude but had different effects on LH pulse patterns. NK3-SAP increased interpulse interval, but Kiss-SAP did not. In contrast, Kiss-SAP disrupted the regular hourly occurrence of LH pulses, but NK3-SAP did not. Because Kiss1R is not expressed in KNDy cells, HiPlex RNAScope was used to assess the colocalization of 8 neurotransmitters and 3 receptors in ARC Kiss1R-containing cells. Kiss1R cells primarily contained transcript markers for GABA (68%), glutamate (28%), ESR1 (estrogen receptor-α) mRNA, and OPRK1 (kappa opioid receptor) mRNA. These data support the conclusion that KNDy neurons are essential for GnRH pulses in ewes, whereas ARC Kiss1R cells are not but do maintain the amplitude and regularity of GnRH pulses. We thus propose that in sheep, ARC Kiss1R neurons form part of a positive feedback circuit that reinforces the activity of the KNDy neural network, with GABA or glutamate likely being involved.


Assuntos
Núcleo Arqueado do Hipotálamo , Kisspeptinas , Hormônio Luteinizante , Neurônios , Animais , Feminino , Núcleo Arqueado do Hipotálamo/metabolismo , Dinorfinas/metabolismo , Ácido gama-Aminobutírico , Glutamatos , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , Receptores de Kisspeptina-1/genética , RNA Mensageiro , Saporinas , Ovinos , Hormônio Luteinizante/metabolismo
12.
Cell Tissue Res ; 393(2): 377-391, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37278825

RESUMO

Neurokinin B (NKB), a recently discovered neuropeptide, plays a crucial role in regulating the kiss-GnRH neurons in vertebrate's brain. NKB is also characterized in gonadal tissues; however, its role in gonads is poorly understood. Therefore, in the present study, the effects of NKB on gonadal steroidogenesis and gametogenesis through in vivo and in vitro approaches using NKB antagonist MRK-08 were evaluated. The results suggest that the NKB antagonist decreases the development of advanced ovarian follicles and germ cells in the testis. In addition, MRK-08 further reduces the production of 17ß-estradiol in the ovary and testosterone in the testis under both in vivo and in vitro conditions in a dose-dependent manner. Furthermore, the in vitro MRK-08 treatment of gonadal explants attenuated the expression of steroidogenic marker proteins, i.e., StAR, 3ß-HSD, and 17ß-HSD dose-dependently. Moreover, the MAP kinase proteins, pERK1/2 & ERK1/2 and pAkt & Akt were also downregulated by MRK-08. Thus, the study suggests that NKB downregulates steroidogenesis by modulating the expressions of steroidogenic marker proteins involving ERK1/2 & pERK1/2 and Akt/pAkt signalling pathways. NKB also appears to regulate gametogenesis by regulating gonadal steroidogenesis in the catfish.


Assuntos
Peixes-Gato , Neurocinina B , Masculino , Animais , Feminino , Neurocinina B/metabolismo , Peixes-Gato/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Testículo/metabolismo , Gametogênese
13.
Gene ; 879: 147592, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37356741

RESUMO

Tachykinins belong to a large, evolutionarily conserved family of brain/gut peptides that are involved in a variety of physiological functions in mammals, such as reproductive regulation. However, little information was available about tachykinins in ancient fish lineage. In the present study, we firstly identified three tachykinin genes (named tac1, tac3 and tac4) and three neurokinin receptors (named nk1r, nk2r and nk3r) from Chinese sturgeon brain and pituitary. Sequence analysis showed that tac1 encoded substance P (SP) and neurokinin A (NKA), tac3 encoded neurokinin B (NKB) and NKB-related peptide (NKBRP), and tac4 encoded hemokin 1 (HK-1) and hemokin 2 (HK-2), respectively. The luciferase reporter assay results showed that NK1R preferentially selected asSP, NK2R preferentially selected asNKA, and NK3R preferentially selected asNKB. Tissue expression analysis showed that the three tac genes were highly detected in the telencephalon and hypothalamus, whereas nkr genes were widely expressed in peripheral tissues. Spatio-temporal expression analysis showed that all three tac genes were highly expressed in unknown sex individuals. Intraperitoneal injection experiments showed that both asSP and asNKB could stimulate luteinizing hormone (LH) release in Chinese sturgeon serum. At the transcriptional level, asSP and asNKB could significantly reduce pituitary follicle-stimulating hormone beta (fshß) mRNA expression, but induce pituitary growth hormone (gh) mRNA expression. In addition, estradiol (E2) could stimulate tac3 mRNA expression in hypothalamus. Taken together, this study provided information on the tachykinin family in Chinese sturgeon and demonstrates that asNKB and asSP could be involved in reproductive and growth regulation in pituitary.


Assuntos
Hipófise , Taquicininas , Animais , Taquicininas/genética , Hipófise/metabolismo , Hormônio Luteinizante/metabolismo , Neurocinina B/genética , Neurocinina B/metabolismo , Peixes/genética , Peixes/metabolismo , RNA Mensageiro/metabolismo , Mamíferos/genética
14.
J Neuroendocrinol ; 35(9): e13285, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37232103

RESUMO

Uncovering the central mechanism underlying mammalian reproduction is warranted to develop new therapeutic approaches for reproductive disorders in humans and domestic animals. The present study focused on the role of arcuate kisspeptin neurones (also known as KNDy neurones) as an intrinsic gonadotropin-releasing hormone (GnRH) pulse generator, which plays a fundamental role in mammalian reproduction via the stimulation of pituitary gonadotropin synthesis and release and thereby in gametogenesis and steroidogenesis in the gonads of mammals. We also discuss the mechanism that inhibits pulsatile GnRH/gonadotropin release under a negative energy balance, considering that reproductive disorders often occur during malnutrition in humans and livestock.


Assuntos
Dinorfinas , Hormônio Liberador de Gonadotropina , Animais , Humanos , Hormônio Liberador de Gonadotropina/metabolismo , Dinorfinas/metabolismo , Neurocinina B/metabolismo , Reprodução/fisiologia , Neurônios/metabolismo , Kisspeptinas/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Mamíferos
15.
J Cell Physiol ; 238(6): 1381-1404, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37186390

RESUMO

Neuromedin B (NMB) and gastrin-releasing peptide (GRP) are the two mammalian analogs in the bombesin peptide family that exert a variety of actions including emotional processing, appetitive behaviors, cognition, and tumor growth. The bombesin-like peptides interact with three receptors: the NMB-preferring bombesin 1 (BB1) receptors, the GRP-preferring bombesin 2 (BB2) receptors and the orphan bombesin 3 (BB3) receptors. Whereas, injection of bombesin into the central amygdala reduces satiety and modulates blood pressure, the underlying cellular and molecular mechanisms have not been determined. As administration of bombesin induces the expression of Fos in the lateral nucleus of the central amygdala (CeL) which expresses BB1 receptors, we probed the effects of NMB on CeL neurons using in vitro and in vivo approaches. We showed that activation of the BB1 receptors increased action potential firing frequency recorded from CeL neurons via inhibition of the inwardly rectifying K+ (Kir) channels. Activities of phospholipase Cß and protein kinase C were required, whereas intracellular Ca2+ release was unnecessary for BB1 receptor-elicited potentiation of neuronal excitability. Application of NMB directly into the CeA reduced blood pressure and heart rate and significantly reduced fear-potentiated startle. We may provide a cellular and molecular mechanism whereby bombesin-like peptides modulate anxiety and fear responses in the amygdala.


Assuntos
Neurocinina B , Peptídeos , Animais , Tonsila do Cerebelo/metabolismo , Bombesina/farmacologia , Bombesina/metabolismo , Medo , Mamíferos/metabolismo , Neurônios/metabolismo , Peptídeos/metabolismo , Receptores da Bombesina/metabolismo , Neurocinina B/metabolismo
16.
Biol Reprod ; 108(6): 936-944, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37074152

RESUMO

Superovulation (SOV) treatment of cows results in unovulated follicles and inconsistent quality of the recovered embryos. It has been demonstrated that luteinizing hormone (LH) secretion is suppressed during SOV treatment of cows, which may cause insufficient follicle development and variation in the development of recovered embryos and unovulated follicles. Pulsatile gonadotropin-releasing hormone/LH secretion is controlled by the activity of kisspeptin, neurokinin B and dynorphin (KNDy) neurons in the arcuate nucleus in many mammals. As neurokinin B promotes the activity of KNDy neurons, we hypothesized that senktide, a neurokinin B receptor agonist, has the potential as a therapeutic drug to improve the ovulation rate and quality of recovered embryos in SOV-treated cows via stimulation of LH secretion. Senktide was administered intravenously (30 or 300 nmol/min) for 2 h, beginning from 72 h after the start of SOV treatment. LH secretion was examined before and after administration, and embryos were collected 7 d after estrus. Senktide administration increased LH secretion in SOV-treated cows. The ratios of code 1, code 1 and 2, and blastocyst stage embryos to recovered embryos were increased by senktide (300 nmol/min) administration. Moreover, the mRNA levels of MTCO1, COX7C, and MTATP6 were upregulated in recovered embryos of senktide (300 nmol/min)-administered animals. These results indicate that the administration of senktide to SOV-treated cows enhances LH secretion and upregulates the expression of genes involved in mitochondrial metabolism in embryos, thereby improving embryo development and embryo quality.


Assuntos
Neurocinina B , Receptores da Neurocinina-3 , Feminino , Bovinos , Animais , Receptores da Neurocinina-3/agonistas , Neurocinina B/metabolismo , Hormônio Luteinizante/farmacologia , Hormônio Luteinizante/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Dinorfinas/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Mamíferos/metabolismo
17.
Peptides ; 164: 171005, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36990389

RESUMO

This review considers three aspects of recent work on the role of KNDy neurons in GnRH pulse generation in ruminants. First, work on basic mechanisms of pulse generation includes several tests of this hypothesis, all of which support it, and evidence that Kiss1r-containing neurons form a positive feedback circuit with the KNDy neural network that strengthen the activity of this network. The second section on pathways mediating external inputs focuses on the influence of nutrition and photoperiod, and describes the evidence supporting roles for proopiomelanocortin (POMC) and agouti-related peptide (AgRP) afferents to KNDy cells in each of these. Finally, we review studies exploring the potential applications of manipulating signaling by kisspeptin, and the other KNDy peptides, to control reproductive function in domestic animals and conclude that, although these approaches show some promise, they do not have major advantages over current practices at this time.


Assuntos
Núcleo Arqueado do Hipotálamo , Hormônio Liberador de Gonadotropina , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Dinorfinas/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , Ruminantes/metabolismo , Kisspeptinas/metabolismo
18.
Front Immunol ; 14: 1049739, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36756128

RESUMO

The coexistence of chronic pain and anxiety is a common clinical phenomenon. Here, the role of tachykinin receptor 3 (NK3R) in the lateral habenula (LHb) in trigeminal neuralgia and in pain-associated anxiety was systematically investigated. First, electrophysiological recording showed that bilateral LHb neurons are hyperactive in a mouse model of trigeminal neuralgia made by partial transection of the infraorbital nerve (pT-ION). Chemicogenetic activation of bilateral LHb glutamatergic neurons in naive mice induced orofacial allodynia and anxiety-like behaviors, and pharmacological activation of NK3R in the LHb attenuated allodynia and anxiety-like behaviors induced by pT-ION. Electrophysiological recording showed that pharmacological activation of NK3R suppressed the abnormal excitation of LHb neurons. In parallel, pharmacological inhibition of NK3R induced orofacial allodynia and anxiety-like behavior in naive mice. The electrophysiological recording showed that pharmacological inhibition of NK3R activates LHb neurons. Neurokinin B (NKB) is an endogenous high-affinity ligand of NK3R, which binds NK3R and activates it to perform physiological functions, and further neuron projection tracing showed that the front section of the periaqueductal gray (fPAG) projects NKB-positive nerve fibers to the LHb. Optogenetics combined with electrophysiology recordings characterize the functional connections in this fPAG NKB → LHb pathway. In addition, electrophysiological recording showed that NKB-positive neurons in the fPAG were more active than NKB-negative neurons in pT-ION mice. Finally, inhibition of NKB release from the fPAG reversed the analgesic and anxiolytic effects of LHb Tacr3 overexpression in pT-ION mice, indicating that fPAG NKB → LHb regulates orofacial allodynia and pain-induced anxious behaviors. These findings for NK3R suggest the cellular mechanism behind pT-ION in the LHb and suggest that the fPAG NKB → LHb circuit is involved in pain and anxiety comorbidity. This previously unrecognized pathway might provide a potential approach for relieving the pain and anxiety associated with trigeminal neuralgia by targeting NK3R.


Assuntos
Ansiedade , Habenula , Dor , Receptores de Taquicininas , Neuralgia do Trigêmeo , Animais , Camundongos , Comorbidade , Habenula/metabolismo , Hiperalgesia , Neurocinina B/metabolismo , Receptores de Taquicininas/metabolismo
19.
J Ovarian Res ; 16(1): 15, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650561

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism, anovulation, and polycystic ovaries. Electroacupuncture (EA) can effectively improve hyperandrogenism and increase ovulation frequency in patients with PCOS. Pieces of suggest that androgen activity in the brain is associated with impaired steroid negative feedback in such patients. Studies have shown that EA regulated androgen receptor (AR) expression and local factor levels (such as anti-Müllerian hormone and inhibin B) in the ovary of PCOS rats. However, few studies have explored the effect of EA on androgen activity in the brain. OBJECTIVE: This study investigated the effect of EA on the kisspeptin-gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) neural circuit and sex hormone receptor expression in the hypothalamus of PCOS rats. METHODS: PCOS signs were induced by letrozole administration, and the induced rats were treated with low-frequency EA at Guan Yuan acupoint (CV4). The effect of EA on PCOS-like signs was evaluated by observing changes in the body weight, ovarian quality, ovarian morphology, and serum sex hormone levels in rats. To explore the mechanism of the effect of EA on PCOS-like signs, the neuropeptide content of the kisspeptin-GnRH/LH neural circuit was assessed using enzyme-linked immunosorbent assay(ELISA); AR and estrogen receptor α (ERα) coexpression on kisspeptin/neurokinin B/dynorphin (KNDy) neurons was determined via triple-label immunofluorescence; and protein and mRNA expression of Kiss1, Ar, Esr1, and kisspeptin receptor (Kiss1r) was evaluated via western blotting and Reverse Transcription-Polymerase Chain Reaction (RT-PCR). RESULTS: The results revealed that the estrous cycle of rats in the EA treatment group recovered, and their body and ovary weight reduced; ovarian morphology improved; serum testosterone and LH levels significantly decreased; and kisspeptin, GnRH, and dynorphin levels in hypothalamic arcuate nucleus significantly decreased. Compared with controls, the number of AR/Kiss1-positive cells increased, number of ERα/Kiss1-positive cells decreased, and protein and mRNA expression of Kiss1, Ar, and Kiss1r significantly increased in PCOS rats. However, EA treatment reversed these changes and reduced the expression of Kiss1, Ar, and Kiss1r significantly. CONCLUSION: Improvement in the reproductive hallmarks of PCOS rats via EA may be achieved by regulating the kisspeptin-GnRH/LH circuit via androgen activity attenuation. Thus, the results provide an experimental basis for acupuncture as an adjuvant medical therapy on PCOS.


Assuntos
Eletroacupuntura , Hiperandrogenismo , Síndrome do Ovário Policístico , Animais , Feminino , Humanos , Ratos , Androgênios/metabolismo , Dinorfinas/metabolismo , Receptor alfa de Estrogênio/metabolismo , Hormônios Esteroides Gonadais , Hormônio Liberador de Gonadotropina , Kisspeptinas/metabolismo , Hormônio Luteinizante , Neurocinina B/metabolismo , Neurônios , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/terapia , Ratos Sprague-Dawley , Receptores Androgênicos/metabolismo , Receptores de Kisspeptina-1/metabolismo , RNA Mensageiro/metabolismo
20.
Cell Rep ; 42(1): 111914, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640343

RESUMO

The mechanism by which arcuate nucleus kisspeptin (ARNKISS) neurons co-expressing glutamate, neurokinin B, and dynorphin intermittently synchronize their activity to generate pulsatile hormone secretion remains unknown. An acute brain slice preparation maintaining synchronized ARNKISS neuron burst firing was used alongside in vivo GCaMP GRIN lens microendoscope and fiber photometry imaging coupled with intra-ARN microinfusion. Studies in intact and gonadectomized male mice revealed that ARNKISS neuron synchronizations result from near-random emergent network activity within the population and that this was critically dependent on local glutamate-AMPA signaling. Whereas neurokinin B operated to potentiate glutamate-generated synchronizations, dynorphin-kappa opioid tone within the network served as a gate for synchronization initiation. These observations force a departure from the existing "KNDy hypothesis" for ARNKISS neuron synchronization. A "glutamate two-transition" mechanism is proposed to underlie synchronizations in this key hypothalamic central pattern generator driving mammalian fertility.


Assuntos
Dinorfinas , Neurocinina B , Camundongos , Masculino , Animais , Neurocinina B/metabolismo , Dinorfinas/metabolismo , Kisspeptinas/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Neurônios/metabolismo , Glutamatos , Hormônios , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...